An Example of a 16-vertex Folkman Edge (3,4)-graph without 8-cliques
نویسندگان
چکیده
In [6] we computed the edge Folkman number F (3, 4; 8) = 16. There we used and announced without proof that in any blue-red coloring of the edges of the graph K1 +C5 +C5 + C5 there is either a blue 3-clique or red 4-clique. In this paper we give a detailed proof of this fact.
منابع مشابه
Edge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملCubic edge-transitive graphs of order 2p3
Let p be a prime. It was shown by Folkman (J. Combin. Theory 3 (1967) 215) that a regular edge-transitive graph of order 2p or 2p is necessarily vertex-transitive. In this paper an extension of his result in the case of cubic graphs is given. It is proved that, with the exception of the Gray graph on 54 vertices, every cubic edge-transitive graph of order 2p is vertex-transitive. c © 2003 Elsev...
متن کاملEdge pair sum labeling of some cycle related graphs
Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...
متن کاملMaster’s Thesis Proposal: Algorithms for Bounding Folkman Numbers
Introduction The study of Folkman numbers comes from the field of Ramsey theory. Ramsey theory is often phrased as the " party question: " What is the minimum number of people needed such that either r people all know each other or l people don't know each other? Clearly, such statements can be phrased as graph coloring problems: What is the smallest 2-colored complete graph such that for all c...
متن کاملA note on vertex-edge Wiener indices of graphs
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
متن کامل